

Talanta

Talanta 66 (2005) 505-512

www.elsevier.com/locate/talanta

Simultaneous flow-through determination of nitrites, nitrates and their mixtures in environmental and biological samples using spectrophotometry

K. Suvardhan^a, K. Suresh kumar^a, S. Hari babu^a, B. Jayaraj^b, P. hiran vi^{a,*}

^a Environmental Monitoring Laboratory, Department of Chemistry, S.V. University, Tiry di 517502 Adia ^b Department of Mathematics, S.V. University, Tirupati 517502, In

Received 31 October 2004; received in revised form 10 November 2004; accorded 11 November 2004

Available online 4 January 2005

Abstract

Newly synthesised 4,4'-methylene-bis-m-nitroaniline has been used to det t nitrites, nitrates, their mixtures in environmental and biological ine in HCl medium and the concentration of samples. The method is based on the reaction of nitrite with 4,4'-methyl e-bis-*m*-nitroa diazonium salt formed, monitored through simultaneous flow by spectrophoto trically. The sorbance of the resultant red colored diazonium salt was measured at 495 nm and stable for more than 12 h. The determination pitrates to be carried out by using the same reaction prior ane foam. The reaction and flow conditions of the to reduction in a flow-through reductor column containing zil sensitivity were found to be $7.5 \times 10^4 \,\mathrm{l}\,\mathrm{mol}^{-1}\,\mathrm{cm}^{-1}$ and full experimental design were optimised. The molar absorptive and S $0.00062 \,\mu g \,ml^{-1}$. Detection limits for nitrite and nitrate were 0.10μg m., respectively. The detailed study of various interference made the confirmation of high selectivity of the meth as successfully applied to the determination of nitrites and nitrates in metho water, soil and biological samples. The results obtain agreed th the reported methods at the 95% confidence level. © 2004 Elsevier B.V. All rights reserved.

Keywords: 4,4'-Methylene-bis-m-nitroaniling afrite io atte ion; Spectrophotometry; Water; Soil; Human serum and urine samples

1. Introduction

vater due to its toxicity [1], Nitrite is undestable in st has been generated concerning hence a great deal of in nitrit. Nitrites are frequently potential ha ards ducts and their precursors used as reservative are with a distribution of the second s in food nature because of nitrogen fertilisers ant and mysterious physiological roles [3–5] for nitric oxide have led to the extensive growth in the studies of NO in the fi s of life science and its related subjects [6,7]. Determination of nitrites, nitrates and their mixtures, especially in environmental samples, is required at many control laboratories and thus the subject of a great many

professional communications. Most spectrophotometric methods for the determination of nitrite in natural and waste water were based on Griess-Iiosvey reaction [8], Saltzman [9] and Jocobs-Hochheiser [10], which was modified several times. Classical batch, flow injection analysis (FIA) or sequential injection analysis (SIA) and spectrophotometric determination of nitrites (nitrates after their reduction) are mostly based on their ability to undergo the diazotization reaction with aromatic amino groups frequently followed by coupling with the formation of azodyes [11-22], the effect on fluorescence of suitable dyes [23–25] and other methods [26,27] were recently used. All these methods have certain limitations such as less stability, selectivity, sensitivity, interference of non-target species and laborious process (diazonium salt coupled with N-(1-naphthyl) ethylene diamine hydrochloride (NEDA)). Ion-selective nitrate electrodes, which have recently became popular but suffer from severe

^{*} Corresponding author. Tel.: +91 877 2250556; fax: +91 877 2261274. E-mail address: chiranjeevi_sai@yahoo.co.in (P. Chiranjeevi).

Scheme 1. Synthesis of 4,4'-methylene-bis-m-nitroaniline.

interference effect caused by other anions present in the sample [28].

This paper deals with the flow-through analysis, coupled with a spectrophotometric detector it is simple, rapid, economically advantageous (low reagent consumption), provides reproducible results in statistical importance (elimination of subjective analytical errors and foreign species) and a useful tool for quantification of samples in a variety of real natural samples at low detection level for series analysis of nitrite, nitrate and their mixtures in environmental and biological samples.

2. Experimental

2.1. Reagents

All the chemicals used were of the highest purity anailable and used without further purification. Sodium in the ammonium chloride were purchased from S.D. fine charicals, Mumbai, India. Hydrochloric acid, sodium hydroide, formaldehyde and *m*-nitroaniline were mach and from Merck Chemicals, Mumbai, India. Doub d-distill al water was used throughout the experiment.

A standard stock solution of) was prerite pared by dissolving 0.15 g so am nitrite 100 ml of × 0.5 M 4,4⁷ doubled-distilled water. The <u> </u> thylenebis-*m*-nitroaniline was prepared by ssolving 14.40 g of 4,4'-methylene-bis-m-r coaniline in 10 of 5 M HCl and double-distilled water. Finally, 1 M diluted to 100 ml w HCl solution wa repared adding 8.33 ml concentrated le stilled yeter. A 0.5 M NH₄Cl HCl in 100 ml de solution wa dissolv $2 \,\mathrm{g}$ of NH₄Cl in 100 ml pared of doub distill water.

2.2. In ur dation

Flow-through measurements were carried out using a Cole Parmer programmable peristaltic pump with an Ismatec eight-channel head (Cole Parmer, USA). In the factor experiments, an SC4 pump from the developmental workshops of the Academy of Science of CR was employed as a second peristaltic pump for pumping the solutions of carrier, HCl and color forming reagent. Sample flow-through was carried out using a six-way 5020 valve (Rheodyne, USA).

Solutions were pumped through TYGON tubes (Cole Parmer, USA) with various internal diameters. The liquids

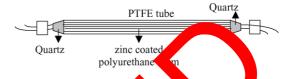


Fig. 1. Lauction colu

were then fed through Teflon an internal di-SA). The reaction coils conameter of 0.5 mr (Su) cubes (integal diam er 0.5 mm) coiled in a sisted of Tefla of 200 mm. A HITACHI spiral of 80 nd reductor tometer with a flow-through quartz cu-U 2001 pectrop. vette with an interna volume of 80 µl and absorption layer kness of 1 cm cell employed as the flow-through dector.

Synthesis 4,4'-methylene-bis-m-nitroaniline

12.7 g of *m*-nitroaniline was dissolved in 125 ml acetone 25 ml of 36.5% hydrochloric acid at 50 °C. The reaction mixture was then treated with 35 ml of 3% aqueous formaldehyde solution at 60 °C with stirring for 1 h and neutralised with 5 M sodium hydroxide. The solid obtained was filtered, washed with hot water, dried and recrystallized from acetic acid [29] (m.p., 102 °C; yield, 91%, as shown in Scheme 1).

2.4. Preparation of reductor column

The column for reduction of nitrate (Fig. 1) consists of a Teflon tube with an internal diameter of 2 mm, whose inlet and outlet are sealed with silicon wool. The reductor column was filled with zinc dust coated polyurethane foam. The reductor can be reactivated four to five times, but its lifetime is decreased after each activation. The reductor column works with good efficiency for a period of 12 h.

2.5. General procedure

Fig. 2 depicts a scheme of the flow-through apparatus (FTA) for determining the nitrites and Fig. 3 depicts the apparatus for determining nitrates (reduction to nitrites) and for simultaneous determination of nitrites and nitrates. Two solenoid valve (A, B) are included in the system for determining both nitrite and nitrate anions. Adjustment of these valves permits feeding of the sample through the reduction column, where the nitrates present in the sample are reduced

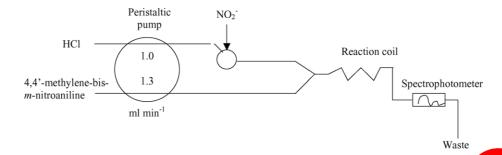


Fig. 2. Flow-through apparatus for determining nitrites.

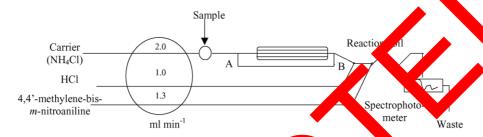


Fig. 3. Flow-through apparatus for deterraining nitrites and nitrates.

to nitrites and the signal obtained then corresponds to the sum of nitrites present in the sample and nitrites formed by reduction of the nitrates present in it. If both valves are switch to the other position, the sample is fed around the reduction column and the signal obtained corresponds only to the concentration of nitrites originally present in the concentration of nitrates in the sample is that determined as a difference between these two signals atthout Statioren effect.

2.6. Procedure for the determinant of nitrate and nitrite ions in water sample.

sample containing to t more than An aliquot of the was treed with 5 M HCl solution in $12 \,\mu \mathrm{g} \,\mathrm{ml}^{-1}$ of nitra T' solution was mixed and then 5:1 ratio (sample:act centrifuged to ove an precipit formed. The centrifuto 50 L caprated flask as reported in gate was asferr literaty [30] and njected into the flow-through system for determin ion / nitrite ions as described in general proced

2.7. Procedure for the determination of nitrate and nitrite ions in soil samples

Soil samples were collected from several selected sites in and around Tirupati and treated in the standard manner [30]. First the soil samples were dried in a oven at 110 ± 15 °C for a period of one day and then they were crushed in a mortar to yield fine dust and was used for analysis. Hundred millilitres of double-distilled water was added to 10 g of prepared sample, the mixture was shaken in a shaking machine and filtered

at the a prescribed time of 5 min. NO₂⁻ and NO₃⁻ ions were determined in the filtrate as discussed in aforesaid procedure.

nitrite ions in biological samples

One millilitres of 0.5 M NaOH solution and 1 ml of 0.5 M ZnSO₄ solution were added to 10 ml serum and the volume was made up to 100 ml. After protein was removed as described in literature [25]. The nitrate and nitrite ions were determined as mentioned in aforesaid procedure.

Ten millilitres urine was diluted by 5 ml methanol. The protein present in the urine was removed [25] and sample is subjected to the determination of nitrite and nitrate as discussed above.

3. Results and discussion

The reaction of nitrite with 4,4'-methylene-bis-m-nitroaniline in an HCl medium produces red colored product with λ_{max} 495 nm as shown in Fig. 4.

3.1. Flow-through determination of nitrates following reduction to nitrites

Several methods of reducing nitrates to nitrite are described in the literature [8,19–27] (e.g., by hydrazine using Cu^{2+} ions as a catalyzer, zinc in $Mn(OH)_4$ medium or in H^+ medium). The reaction conditions for these methods require long time for reduction and the necessity of mixing large volume of reagent. However, it do not allow these types

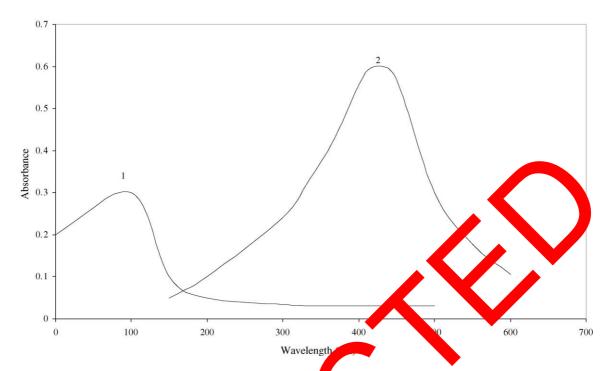


Fig. 4. Absorption spectrum of nitrite ion with: (1) reagent blank; (2) 4,4 tethylene-bis-m-nitroaniline.

of reductions for flow-through determination. In the present work, the reducing agent employed in reductor was zince to coated polyurethane foam. The nitrites formed were discrimined by reaction with 4,4'-methylene-bis-*m*-nitro aniline to presence of HCl medium.

A 0.5 M NH₄Cl solution was used as a ım into asses th which the sample is injected (Fig. 3) and ugh the reductor column. The presence of hydro lori reductor would lead to destruction ane foam if it polyur hydrochlon is in excess. Hence, the channel cid, which is necessary for the diazotize on re tion, was co. the system after the exit **f** the sample m the reductor.

3.2. Simultaneous low-through determinations of nitrites and nitrates

We applyed the apparatus depicted in Fig. 3 for the determination of a cite and nitrate present in given samples by the above regent employed. As the reaction conditions in the reaction re different than in the apparatus for the determination of horites as shown in Fig. 2, i.e., a carrier channel for NH₄Cl instead of HCl, was necessary to measure the calibration curve of nitrites under the same conditions as the calibration curve of nitrates, i.e., in the presence of ammonium chlorides into which the sample is injected and with the solenoid valves switched to a position so that the injected NO_2^- sample is carried by the carrier stream around the reduction column.

The basic characteristics of flow through determination for NO_2^- were compared with direct determination for NO_2^- were presented in Table 1. It indicates from comparison that

the NH of carrier is used, there is a slight decrease in the series of the method, i.e., apparently caused by the weater dispersion of the sample in the reductor. On the other has the detection and determination limits were decreased in flow-through arrangement, probably due to lower resultant pulsation of the flow. Thus, there is a significant increase in the linear dynamic range of the calibration.

3.3. Optimisation of flow-through system

3.3.1. Effect of flow-rate of a sample

The effect of flow-rate on the peak height was studied in the range of $0.5-1.5 \,\mathrm{ml}\,\mathrm{min}^{-1}$. The peak height decreased with the increasing of the flow-rate. Taking into consideration

Table 1 Effect of foreign species on the simultaneous flow-through determination of nitrite, nitrate and in their mixtures

Foreign ions	Tolerance limit $(\mu g ml^{-1})$
NO ₃ ⁻ , Cl ^{-a} , EDTA	10000
K ⁺ , Cd ²⁺ , CH ₃ COO ⁻ , Ca ²⁺ ,	5000
CO ₃ ²⁻ , SO ₄ ²⁻ , Na ⁺ , Mg ²⁺	
Al ³⁺ , WO ₄ ²⁺ , Ba ²⁺ , Tartarate, PO ₄ ³⁻	4000
SO ₃ ²⁻ , Mn ²⁺ , CN ⁻ , Hg ²⁺ , SCN ⁻	2000
I-,F-	1000
S^{2-a}	400
Pb ²⁺ , MoO ₄ ²⁺ , Ni ²⁺ , Zn ²⁺	200
Fe ²⁺ , Co ²⁺ , Cu ²⁺ , Sn ²⁺	40
Fe^{3+b} , V^{5+} , Cr^{6+}	8

 $[^]a$ Can be masked up to 400 and 300 $\mu g\,ml^{-1}$ by the addition of 2 ml of 5 M HgCl₂.

^b Can be masked up to $200 \,\mu \text{g ml}^{-1}$ by the addition of 3 ml of 5 M EDTA.

Table 2
Comparison of basic characteristics between flow-through determination and direct determination

Basic characteristics	Flow-through determination of NO ₂ ⁻	Flow-through determination of NO ₃ ⁻	Direct determination of NO ₂ ⁻ with Dapsone + NEDA [12]
Slope of linear part (mg ml ⁻¹)	0.030	0.01630	0.0245
Detection limit ($\mu g ml^{-1}$)	1.0	0.12	0.56
Determination limit (μg ml ⁻¹)	1.48	3.96	0.44
Repeatability (%)	0.65	1.84	1.5
Linear calibration range (mg ml ⁻¹)	1.46-36.0	3.6-46.0	0.40-74.0
Correlation coefficient	0.9992	0.9994	0.9994

the stability of the pump, peak shape and sampling time, the flow-rate of the reagent carrier solution was adjusted to 2 ml min^{-1} .

3.3.2. Sample solution

The influence of the sample volume on the absorbance was investigated by injecting different volumes (150–250 μ l) of nitrite standard solutions into the system at 1 ml min⁻¹ flowrate. The flow-through volume has a significant effect, yielding increased peak height and reproducibility with increasing of the flow-through volume up to 200 μ l. After increasing the volume of the sample beyond 200 μ l, the peak height gradually decrease. So, 200 μ l of sample solution was selected for maximum peak height in present investigation.

3.3.3. Effect of color forming reagent concentration

The effect of concentration of 4,4'-methylene-bisnitroaniline reagent in the carrier solution, on the pea height was investigated at flow-rate of 1.3 ml min⁻¹ by using $8 \mu g l^{-1}$ nitrite solution. The concentry ons methylene-bis-m-nitroaniline reagent wer varied o r the range 0.1–1.0 M. Maximum peak height concentration of 0.5 M of 4,4'-meth ne-bis **Atroaniline** as color developing reagent in the rrier solution for lower concentration levels of nitrite a nic te in the san, solution.

3.3.4. Effect of reduce length on efficiency of reduction

In monitoring the effect of the length of reductor on the ne magnide of the active conefficiency of the reduc tact area of uctor s chared through a change in the length the re and that the reduction of niictor. W paximum when a reductor with a length itrites i trates (omm. Legithening of the reductor beyond 200 mm led greater broadening of the nitrate sample zone. th of 200 mm was chosen for the present So, reductor le study.

3.3.5. Effect of HCl concentration and NH₄Cl flow rate

In addition, a study was performed for the simultaneous effect of HCl concentration and NH₄Cl flow rate for determination of nitrate and nitrite ions in various environmental samples. Under the optimal conditions for attaining the maximum sensitivity of the flow-through determinations of nitrates, following prior reduction to nitrites, were given as: λ_{max} , 495 nm; HCl, 1 M; HCl flow rate, 1.0 ml min⁻¹; NH₄Cl,

0.5 M; NH₄Cl flow rate, 2.0 ml min^{-2} volume 6 sample injected, $200 \text{ }\mu\text{l}$; reaction coil length, 30 mm; reduce a length, 200 mm). The basic characteristics of his determination are given in Table 2.

3.3.6. Tolerance of force y ion

, as pote Several cation and an al interferents for sty ed in detail. Table 2 matrices, w different samp summarises the torance limits, interfering ions on the determination of 10 m/s^{-1} of nitrite and $120 \text{ mg} \text{ l}^{-1}$ of nitively. Sulp. le and chlorides can be masked up 0 and 300 μg ml⁻¹ with 2 ml of 5 M mercuric chloride. h(III) can be asked up to 200 μ g ml⁻¹ with 3 ml of 5 M Iı TA. The tolerace limit was taken as the amount, which E cau \ an error $f \pm 5\%$ at the peak height. Almost all the did not interfere with nitrites, nitrates and mixtures in environmental and biological samples by mun cous flow-through method.

3.4. Reaction sequence

Nitrate ion interact with zinc coated polyurethane foam in reductor column and converts into nitrite ion. This nitrite ion with the help of carrier solution flow-through the system to react with 4,4'-methylene-bis-m-nitroaniline in presence of

NO₃ + Zn
$$\xrightarrow{\text{Polyurethane}}$$
 NO₂ + ZnO

Nitrate ion

Nitrate Zinc

Nitrite Zinc Oxide

NO₂ NO₂ NO₂

NO₂ NO₂

NO₂ NO₂

Nitrite Hydrochloric 4,4'-methylene-bis-m-nitroaniline acid

NO₂ NO₂

NO₂ NO₂

NO₃ NO₄

NO₄ NO₅

NO₅ NO₇

NO₅ NO₇

NO₇ NO₇

NO₈ NO₈

N

Scheme 2. (i) Reaction in reductor column; (ii) formation of color product.

Table 3

Analytical results of total amount of nitrite and nitrate in various environmental samples with 4,4′-methylene-bis-m-nitroaniline

Sample	Proposed method						Reported method[7,8,12-20]			
	Added $(\mu g ml^{-1})$	Found (µg ml ⁻¹)	Recovery (%)	S.D. ^d (%)	f-test ^e	t-test ^f	Added $(\mu g m l^{-1})$	Found (µg ml ⁻¹)	Recovery (%)	S.D. ^d (%)
Synthetic sample-I	0.2	0.197	98.5	0.860	2.4	0.9	0.2	0.194	97.5	0.665
Synthetic sample-I	0.5	0.496	99.2	0.912	1.2	0.7	0.5	0.492	98.4	0.716
Natural water sample-I	_	0.236	_	_	1.1	0.6	_	0.261	_	_
	0.1	0.334	98.0	0.590	_	_	0.1	0.3585	97.5	0.716
Natural water sample-II	_	0.391	_	_	_	_	_	0.329		_
_	0.3	0.688	99.0	0.547	1.3	0.7	0.3	0.29	97.3	0.678
Soil sample-I	_	0.126	_	_	_	_	_	_	_	_
•	0.2	0.324	99.0	0.730	1.3	0.7	0.3	0.292	97.3	0.476
Soil sample-II	_	0.280	_	_	_	_	_	-	_	_
	0.2	0.477	98.5	0.840	1.0	0.2	0.5	0		0.752
Urine ^a	0	0.158	_	_	_	_		o.114	_	_
	0.4	0.555	99.2	0.496	_	_	0.5	0.606	98.4	0.640
Human serum (hypertension) ^b	0	0.396	-	_	_	-	-	21	_	_
(71	0.4	0.791	98.7	0.810	_	_		1.198	98.0	0.910
Human serum (health) ^c	0	0.623	_	-			-	0.426	_	-
	0.4	1.02	99.5	0.930		-	1.5	1.906	98.6	0.894

^a Urine samples collected from S.V.R.R. Hospital.

HCl to form stable diazonium chloride as shown in Speme 2. Hence, it is not required to develop the for by the reaction with other coupling reagents.

3.5. Method evaluation

The proposed flow-through analyser was critically evaluated with regard to reproducibility, according to sample interaction and sample frequency.

3.5.1. Reproducibility

To test the reproducibility of the flow-through analyser, four repetitive analysis cycles of each sample were run. A % S.D. in the range 0.49–0.93 was obtained as shown in Table 3.

3.5.2. Accuracy

The accuracy of the proposed flow-through analyser was evaluated by comparing the results with those obtained by the

Table 4
Comparison of spectroph and comethods with present method for determination of nitrite and nitrate ions

Reagents	λ_{max} (nm)	Sensitivity (l mol ⁻¹ cm ⁻¹)	Remarks	References
Sulph, lamide	550	4.0×10^{4}	Less sensitive	[7]
Sulphan, ci	550	4.6×10^{4}	Less detection limit	[8]
Dapsone	540	7.2×10^4	SO ₂ and Fe(III) interfered and less sensitive than the proposed method	[12]
Sulphadiazine	545	6.9×10^4	Controlled heating is required	[13]
3-Nitroaniline	535	4.9×10^{4}	_	[14]
p-Aminobenzophenone	555	7.0×10^4	Cu ²⁺ , Fe ³⁺ , PO ₄ ³⁻ interfered seriously	[15]
<i>p</i> -Aminophenyl mercapto acetic acid	565	4.65×10^4	15 min is needed for colour development, Fe(III), Sn(II), iodide and sulphide interfered seriously	[16]
<i>p</i> -Rosanilinium chloride	560	8.33×10^4	30 min is needed for colour development and metal ions are interfered seriously	[17]
<i>p</i> -Aminoacetophenone	545	4.6×10^{4}	Cu ²⁺ , Fe ³⁺ , S ₂ ⁻ and SO ₂ interfered seriously	[18]
Pararosaniline	565	5.75×10^4	Fe ²⁺ , Cr(VI) and sulphide interfered seriously	[19]
<i>p</i> -Nitroaniline	545	6.4×10^4	Tedious extraction into iso amyl alcohol	[20]
4,4'-Methylene-bis- <i>m</i> -nitroaniline	495	7.5×10^4	Most sensitive, rapid, facile, non extractive, low cost reagent, common ions do not interfere	This work

^b Blood samples collected from S.V.R.R. Hospital.

^c Blood samples collected from SVIMS.

d Mean \pm standard deviation (n = 4).

^e Tabulated f-test for (4,4) degree of freedom at P(0.95) is 6.39.

f Tabulated t-test values for 8 degrees of freedom at P(0.95) is 2.36.

direct determination of nitrite ion only. The results shown in Table 3 reveal the good correlation between the two methods indicative of present method is more sensitive than the reported methods in literature [7,8,12–20].

3.5.3. Effect of sample interaction

Samples interaction or the carry over effect was investigated by analysing a sample with a low analyte concentration followed by that of high concentration and again that of low concentration. A sample containing $6.0\,\mathrm{mg}\,\mathrm{l}^{-1}$ was used to represent the low analyte concentration. Sample interaction was then calculated using the following reaction:

Sample interaction =
$$\frac{K_3 - K_1}{K_2} \times 100\%$$

where K_1 is the sensitivity of the analyte containing 6.0 mg l^{-1} nitrite ions, K_2 the sensitivity of the analyte containing 30 mg l^{-1} nitrite ions and K_3 is the response of the analyte containing 6.0 mg l^{-1} nitrite ions. The calculated carry over effect was found to be 0.05%.

3.5.4. Sampling frequency

The experimental period for one complete analytical cycle was 240 s long giving an overall sampling rate of 15 samples/h.

3.6. Applications of the method for simultaneous determination of NO_2^- , NO_3^- and statistical comparison with reported method

The proposed method for the simultane yed fo a samples of nitrates and nitrites has been emp of water, soil, urine and serum soples were sented in Table 3. The obtained results as mpared will the reported methods [7,8,12–20] in terms of tudent's t-test and f-test. The analytical day summarised in Table 3 suggest that the percentage of oth ions recovery from water, soil and biological sames range from 98.0 to 99.5%, which is more reliable and si e than the other methods. The te of th ions antrite and nitrate) unrecovery per 3 indicates that their order study presen d in the der in grious er fronmental systems under study are as follows:

Biological samples > soil samples Soil samples > ter samples Biological samples > water samples.

It is evident from the above data that the proposed method is facile, rapid and more sensitive (Table 4).

4. Conclusion

The method is facile, fast, reliable and highly sensitive for simultaneous determination of both nitrites, nitrates and in their mixtures in real samples. The limit of detection of the proposed method is superior and compared with some previously reported methods [7,8,12–20]. The method has added advantage over reported method [7,8,12–20] owing to its:

- Simplicity in synthesis of color forming reagent at ordinary laboratories.
- (ii) Synthesised organic reagent has distinct in terms of sensitivity, selectivity towards nitrite
- (iii) Schlieren effect does not effect to color in sity, den sity, dynamic flow, temperature etc.
- (iv) Proposed method is sensitive due to the stabilitation of diazonium chloride having a λ_{max} 5 nm irrocative of no additional coupling reagents

Freedom from the effect comperature adependence, less interference, more accuracy a havoid lace of lengthy extraction steps when the de to be place to mong the most sensitive ones.

References

- [1] A. Pattay, Ir strial Hygiene and Toxicology, Interscience, New 1962 917.
- [2] W. Lijinsky, S. Epstein, Nature (London) 21 (1970) 225.
- Moncada, R.M.J. Palmer, E.A. Higgs, Pharmacol. Rev. 23 (1991)
- [4] R.F. Furchgott, J.V. Zawadzki, Nature 288 (1980) 373.
- [5] R.F. Schuman, D.V. Madison, Anal. Sci. 254 (1991) 1503.
- [6] T. Malinski, M.W. Radomski, Z. Taha, S. Moncada, Biochem. Biophys. Res. Commun. 194 (1993) 960.
- [7] P. Griess, Chem. Ber. 12 (1879) 427.
- [8] B.E. Saltzman, Anal. Chem. 26 (1954) 1949.
- [9] M.B. Jacobs, S. Hochheiser, Anal. Chem. 30 (1958) 426.
- [10] M. Hoshino, R. Konishi, N. Tezuka, I. Veno, H. Seki, J. Phys. Chem. 100 (1996) 13569.
- [11] M.J. Moorcroft, J. Davis, R.G. Compton, Talanta 54 (5) (2001) 785
- [12] P. Nagaraja, M. Shiva swamy, H. Kumar, Int. J. Environ. Anal. Chem. 80 (1) (2001) 39.
- [13] S.S. Nair, Int. J. Environ. Anal. Chem. 44 (1991) 153.
- [14] H.P.S. Rathore, S.K. Tiwari, Anal. Chim. Acta 242 (1991)
- [15] A.A. Al-Hatin, Int. J. Environ. Anal. Chem. 38 (1990) 617.
- [16] P.K. Tarafder, H.P.S. Rathore, Analyst 113 (1988) 1073.
- [17] V. Raman, C.P. Sharma, J. Ind. Chem. Soc. 66 (1989) 840.
- [18] P. Kaur, S. Sunita, V.K. Guptha, J. Ind. Chem. Soc. 64 (1987) 428
- [19] I. Nemcova, L. Cermakova, J. Gasparic, Formation of new organic chromogens, in: Spectrophotometric Reactions, Marcel Dekker, New York, 1996, 193.
- [20] P.C.F.C. Gardolinski, A.R.J. David, P.J. Worsfold, Talanta 58 (6) (2002) 1015.
- [21] H.D. Revanasiddappa, T.N. Kiran Kumar, Fres. Environ. Bull. 10 (10) (2001) 781.
- [22] Z. Legnerova, P. Solich, H. Sklenarova, D. Satinsky, R. Karlicek, Water Res. 36 (11) (2002) 2777.
- [23] M.C. Icardo, J.V.G. Mateo, J.M. Calatayerd, Analyst 126 (8) (2001) 1423.
- [24] C.Z. dong, Chin. J. Anal. Chem. 30 (11) (2002) 1407.

- [25] L. Monser, S. Sadok, G.M. Greenway, I. Shah, R.F. Uglow, Talanta 57 (93) (2002) 511.
- [26] M.I.C. Monteiro, F.N. Ferreria, N.M.M. De Oliveira, A.K. Avila, Anal. Chim. Acta 477 (1) (2003) 125.
- [27] J. Vesely, D. Weiss, K. Stulik, Analysis with Ion-Selective Electrode, Ellis Horwood, New York, 1978, 166.
- [28] M.S. Patel, R.S. Patel, S.K. Patel, K.C. patel, Acta Cincia Indica 29 (2) (2003) 75.
- [29] M. Brabcova, P. Rychlovsky, I. Nemcova, Anal. Lett. 36 (10) (2003) 2303
- [30] J.-S. Li, H. Wang, X. Zhang, H.-S. Zhang, Talanta 61 (2003) 797

